71 research outputs found

    An Optimal Coordination Framework for Connected and Automated Vehicles in two Interconnected Intersections

    Full text link
    In this paper, we provide a decentralized optimal control framework for coordinating connected and automated vehicles (CAVs) in two interconnected intersections. We formulate a control problem and provide a solution that can be implemented in real time. The solution yields the optimal acceleration/deceleration of each CAV under the safety constraint at "conflict zones," where there is a chance of potential collision. Our objective is to minimize travel time for each CAV. If no such solution exists, then each CAV solves an energy-optimal control problem. We evaluate the effectiveness of the efficiency of the proposed framework through simulation.Comment: 8 pages, 5 figures, IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS 201

    Beyond Reynolds: A Constraint-Driven Approach to Cluster Flocking

    Full text link
    In this paper, we present an original set of flocking rules using an ecologically-inspired paradigm for control of multi-robot systems. We translate these rules into a constraint-driven optimal control problem where the agents minimize energy consumption subject to safety and task constraints. We prove several properties about the feasible space of the optimal control problem and show that velocity consensus is an optimal solution. We also motivate the inclusion of slack variables in constraint-driven problems when the global state is only partially observable by each agent. Finally, we analyze the case where the communication topology is fixed and connected, and prove that our proposed flocking rules achieve velocity consensus.Comment: 6 page

    On Team Decision Problems with Nonclassical Information Structures

    Full text link
    In this paper, we consider sequential dynamic team decision problems with nonclassical information structures. First, we address the problem from the point of view of a "manager" who seeks to derive the optimal strategy of the team in a centralized process. We derive structural results that yield an information state for the team which does not depend on the control strategy, and thus it can lead to a dynamic programming decomposition where the optimization problem is over the space of the team's decisions. We, then, derive structural results for each team member that yield an information state which does not depend on their control strategy, and thus it can lead to a dynamic programming decomposition where the optimization problem for each team member is over the space of their decisions. Finally, we show that the control strategy of each team member is the same as the one derived by the manager. We present an illustrative example of a dynamic team with a delayed sharing information structure.Comment: 16 page

    Combining Learning and Control in Linear Systems

    Full text link
    In this paper, we provide a theoretical framework that separates the control and learning tasks in a linear system. This separation allows us to combine offline model-based control with online learning approaches and thus circumvent current challenges in deriving optimal control strategies in applications where a large volume of data is added to the system gradually in real time and not altogether in advance. We provide an analytical example to illustrate the framework.Comment: 6 pages, 1 figure. arXiv admin note: text overlap with arXiv:2211.1497

    Conditions for State and Control Constraint Activation in Coordination of Connected and Automated Vehicles

    Full text link
    Connected and automated vehicles (CAVs) provide the most intriguing opportunity to reduce pollution, energy consumption, and travel delays. In earlier work, we addressed the optimal coordination of CAVs using Hamiltonian analysis. In this paper, we investigate the nature of the unconstrained problem and provide conditions under which the state and control constraints become active. We derive a closed-form analytical solution of the constrained optimization problem and evaluate the solution using numerical simulation
    • …
    corecore